
CS 115 Lecture
Boolean logic

Taken from notes by Dr. Neil Moore

Boolean logic and logical operators

There are three logical operators that let us combine Boolean expressions.
They have lower precedence than the relational operators (<, >, …)
• not A: True if A is False, False if A is True

• A is any Boolean expression:
if not is_finished:

do_more_work()

• A and B: True if both A and B are True
in_range = size >= 0 and size <= 100

• A or B: True if either A or B is True or Both!
if snow_inches > 6 or temperature < 0:

print(“Class is cancelled”)

Complex Boolean expressions

• not has the highest precedence (but still lower than relational)
• and has the next highest
• or has the lowest of the three
• So not A or B and C or D means

(((not A) or (B and C)) or D)

• People often forget the order of and and or operators
• It’s not a bad idea to always use parentheses when they are both in an

expression
not A or (B and C) or D

Truth tables

The truth table is a tool for making sense of complex Boolean
expressions.

A not A

True False

False True

A B A and B

True True True

True False False

False True False

False False False

A B A or B

True True True

True False True

False True True

False False False

Truth tables

• A table has one row for each possible combination of values of True
and False

• if there is one input, two rows (T, F)
• two inputs, four rows (TT, TF, FT, FF)
• three inputs, eight rows (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF)

• A table has one column for each boolean expression
• Inputs: Boolean variables or comparisons (relational expressions)
• Intermediate results: The Boolean value of the expression for each not, and,

or.
• Output: the Boolean value of the whole expression

A more complicated example

not (not A or not B)

A B not A not B not A or not B result

True True

True False

False True

False False

A more complicated example

not (not A or not B)

A B not A not B not A or not B result

True True False False

True False False True

False True True False

False False True True

A more complicated example

not (not A or not B)

A B not A not B not A or not B result

True True False False False

True False False True True

False True True False True

False False True True True

A more complicated example

not (not A or not B)

A B not A not B not A or not B result

True True False False False True

True False False True True False

False True True False True False

False False True True True False

De Morgan’s laws

• Two Forms:
• not (not A or not B) = A and B
• not (not A and not B) = A or B

• These can be useful for rewriting expressions to simplify them
• Can make your code easier to understand and faster to execute

• Examples:
• not (x > 5 and x < 10) is the same as not(x > 5) or not (x < 10) which is the same as x

<= 5 or x >=10
• not (y == x or z != 5 and p == q) is the same as not(y == x) and not (z != 5) or not (p

== q) which is the same as y != x and z == 5 or p != q
• The opposite of < is >=, that is, a < b is False if a >= b is True
• The opposite of > is <= (don’t forget the =)

Be careful!

• It is easy to accidentally write an expression that is always True or always
False

• Tautolology (always True) and contradiction (always False)
• Examples:
if size >= 10 or size < 50:

print(“in range”)
• What happens when size is 100? 20 ? 2? (Hint: all of those values result in True!)
• The or operator is True if EITHER comparison is True; the two comparisons cannot both be

False at the same time!
• So this is a tautology (always True)

if size < 10 and size > 100:
print(“out of range”)

• The comparisons cannot both be True at the same time! At least one condition will be False
• So the message will never print – a contradiction (always False)

Be careful!

• Don’t trust the English language!
• Make a truth table if you are not sure

• “I want to run this if size < 10 and if size > 100”
• In logic, that should be an or operator, not an and operator:

• “Run this if size < 10 or size > 100”

• “if x is equal to 4 or 5…”
• Wrong: if x == 4 or 5:
• Tests must be written out explicitly
• Should be: “if x is equal to 4 or x is equal to 5”

if x == 4 or x == 5:

Coercing other types to bools

• Why did the last example if x == 4 or 5: run at all? What does Python see it as?
• or is a boolean operator – it works on bools and returns a bool
• There is a bool from the x == 4, but the 5 is by itself! (x == 5 is NOT implied

there!)
• Python needs a bool on the right of the or operator – how does it make the 5 a

bool??
• It forces (coerces) the 5 to be a bool according to the rules

• For numbers, any value but 0 is turned into True, 0 is False
• For strings, any string except the empty string is True, “” is False
• For lists, any list except the empty list is True, the empty list [] is False
• ALL graphics objects are True!

• So the expression above “x == 4 or 5” is ALWAYS TRUE because the 5 is
coerced to True, and “anything or True” is always True. Tautology!

Coercing other types to bools

• This is NOT something you should rely on in your code – it is difficult for
someone to read and understand, and it is very prone to bugs if you are
not careful.

• Example: What does this condition mean? if not name:
where name is a string

• not is a bool operator, so it must have a bool value to operate on
• name is a string, not a bool, so its value is coerced to a bool
• If the name is an empty string, then it’s coerced to False, so not name is

the same as not False, which is True
• That condition (not name) is equivalent to if name == “”:
• But if name == “”: is a lot easier to understand (and not get backwards!)

How Indentation Really Matters!

Are these two if structures the same?
if a > 12:

if b < 50:
print(“red”)

else:
print(“blue”)

Do they give the same output all the
time?
if a > 12:

if b < 50:
print(“red”)

else:
print(“blue”)

	CS 115 Lecture
	Boolean logic and logical operators
	Complex Boolean expressions
	Truth tables
	Truth tables
	A more complicated example
	A more complicated example
	A more complicated example
	A more complicated example
	De Morgan’s laws
	Be careful!
	Be careful!
	Coercing other types to bools
	Coercing other types to bools
	How Indentation Really Matters!

